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Abstract

Characterizing the relationship between neural population activity
and behavioral data is a central goal of neuroscience. While latent
variable models (LVMs) are successful in describing high-dimensional
time-series data, they are typically only designed for a single type of
data, making it difficult to identify structure shared across different
experimental data modalities. Here, we address this shortcoming by
proposing an unsupervised LVM which extracts temporally evolving
shared and independent latents for distinct, simultaneously recorded
experimental modalities. We do this by combining Gaussian Process
Factor Analysis (GPFA), an interpretable LVM for neural spiking
data with temporally smooth latent space, with Gaussian Process
Variational Autoencoders (GP-VAEs), which similarly use a GP prior
to characterize correlations in a latent space, but admit rich expressivity
due to a deep neural network mapping to observations. We achieve
interpretability in our model by partitioning latent variability into
components that are either shared between or independent to each
modality. We parameterize the latents of our model in the Fourier
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domain, and show improved latent identification using this approach
over standard GP-VAE methods. We validate our model on simulated
multi-modal data consisting of Poisson spike counts and MNIST images
that scale and rotate smoothly over time. We show that the multi-
modal GP-VAE (MM-GPVAE) is able to not only identify the shared
and independent latent structure across modalities accurately, but
provides good reconstructions of both images and neural rates on held-
out trials. Finally, we demonstrate our framework on two real world
multi-modal experimental settings: Drosophila whole-brain calcium
imaging alongside tracked limb positions, and Manduca sexta spike
train measurements from ten wing muscles as the animal tracks a visual
stimulus.

1 Introduction
Recent progress in experimental neuroscience has enabled researchers to record
from a large number of neurons while animals perform naturalistic behaviors
in sensory-rich environments. An important prerequisite to analyzing these
data is to identify how the high-dimensional neural data is related to the
corresponding behaviors and environmental settings. Traditionally, researchers
often employ a two-step approach, involving first dimensionality reduction
on neural data followed by a post-hoc investigation of the latent structure
of neural recordings with respect to experimental variables of interest such
as stimuli or behavior [1–5]. Researchers may also specifically design latent
variable models (LVMs) that extract low-dimensional structure in neural data
using these experimental variables of interest [6–9]. However, recent deep
learning advancements allow for both experimental and behavioral variables
to be part of a single latent-variable model [10–13], thus opening a new avenue
for unsupervised discoveries on the relationship between neural activity and
behavior.

The existing approaches that jointly model neural activity and behavior
are limited in that they often rely on a single latent space to describe data
from both modalities [10, 11], making it difficult for practitioners to isolate
latent features that are shared across and independent to neural activity or
behavior. Approaches that do isolate modality specific and shared latent
structure either do so with no temporal structure [14, 15, 13, 16–18], or use
a relatively inflexible linear dynamical system [12]. Moreover, because of
the deep neural network mapping from latents to observations, such existing

2



multi-modal approaches generate latent spaces that are not obviously related
to experimental variables of interest, and so additional ad hoc model features
are often added to aid in interpretability and analysis in neuroscience settings
[10, 11, 8].

However, LVMs developed for neural data often are able to uncover
interpretable features using neural activity alone in an unsupervised fashion
with minimal a priori assumptions. One example of these is Gaussian Process
Factor Analysis (GPFA), a widely used LVM in neuroscience that finds
smoothly evolving latent dynamics in neural population activity, and can
illustrate different aspects of neural processing [19–23]. GPFA constrains
the latent space of neural activity through the use of a Gaussian Process
(GP) prior. GP priors have also been adapted to regularize the latent space
of variational autoencoders (GP-VAE or GP-prior VAE) with a variety of
applications [24–27]. In each of these approaches, the GP prior provides
a flexible constraint in the latent dimension, specifying correlations across
auxiliary observations like viewing angle, lighting, or time. The GP prior often
is used for out-of-sample prediction in GP-VAEs, but in GPFA is frequently
used to visualize latent structure in noisy neural population activity on a
trial-by-trial basis [20, 2, 21]. Here, we wish to leverage the interpretability
seen in unsupervised GPFA models with the power of GP-VAEs to use with
multi-modal time-series datasets in neuroscience.

We propose a model for jointly observed neural and behavioral data that
partitions shared and independent latent subspaces across data modalities
while flexibly preserving temporal correlations using a GP prior. We call this
the multi-modal Gaussian Process variational autoencoder (MM-GPVAE).
Our first innovation is to parameterize the latent space time-series in terms
of a small number of Fourier frequencies, an approach that has been used
before in the linear GPFA setting [28, 29, 21]. We show that the Fourier
representation dramatically improves latent identification for the standard
GP-VAE. Our second innovation is to augment our new Fourier GP-VAE
model to describe two data modalities simultaneously by mapping the latents
linearly to neural data (like in GPFA), as well as nonlinearly to another
experimental variable via a deep neural network (like a GP-VAE). We leave
the specific identity of this other experimental modality intentionally vague -
it could be keypoints of limb positions as animals freely move or visual stimuli
across time. Because this observation modality is characterized by a deep
neural network, our model can be adapted to any additional experimental
variable of interest.
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We validate our MM-GPVAE model on a simulated dataset of a smoothly
rotating and scaling MNIST digit alongside simulated Poisson neural activity,
whereby the digit data and the spiking data share latent structure. We show
that the MM-GPVAE model is able to recover both shared and independent
latent structures while simultaneously providing accurate reconstructions of
data from both modalities. Lastly, we demonstrate the utility of our model
by fitting the MM-GPVAE to two real-world multi-modal neural datasets:
1) Drosophila (fly) whole-brain calcium imaging alongside tracked 16 limb
positions, and 2) Manduca sexta (hawkmoth) spike train measurements from
ten wing muscles alongside a continuously moving visual stimulus. In the
former case, we demonstrate that the neural and shared subspaces best
separate Drosophila behavioral conditions and in the latter case, we show
distinct time-varying latent components tracking muscle and stimuli movement
in the experiment. By showing the MM-GPVAE in these two domains, we
demonstrate that our model is adaptable to a range of diverse experimental
preparations in systems neuroscience.

2 The Gaussian Process Variational Autoen-
coder

The Gaussian Process variational autoencoder (GPVAE) uses high-dimensional
data (e.g. images) accompanied by auxiliary information, like viewing angle,
lighting, object identity, or observation time. This auxiliary information
provides the indices in the GP prior latent representation, specifying corre-
lations across the latent space and allowing for out-of-sample predictions at
new auxiliary values [24–26]. However, in our case we consider continuously
observed time-series data in experimental neuroscience experiments, so our
auxiliary information here are evenly sampled time-bins. Because of this,
we can leverage the advantages of the Fourier-domain GP representation
[29, 22, 28].

Formally, consider smoothly-varying image data across timepoints, rep-
resented by the pixels-by-time matrix Y ∈ NN×T . For latent variable
z(t) ∈ IRP each latent zp(t) (t ∈ {1, 2 . . . T}) evolves according to a Gaussian
process, zp(t) ∼ GP(0, kθ(·, ·)), with covariance kernel kθ. The time-by-time
covariance matrix of each zp(t) is then given by the Gram matrix Kθ corre-
sponding to kθ. We use a squared exponential (RBF) kernel for K governed
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by a marginal variance and length scale θ = {ρ, ℓ} with an additive diagonal
term αI to help with inference [30, 24]. The likelihood of the image data
is Gaussian with mean given by the latent values at any timepoint t passed
through a deep neural network gψ(·) with parameters ψ and whose covariance
is σ2

yI.
The GP-VAE is learned using standard VAE amortized inference [31],

where the parameters µψ and σ2
ψ of a variational distribution qϕ are given as

neural network functions of the observed data Y. Here, the evidence lower
bound (ELBO) is maximized with respect to the variational parameters ϕ,
model parameters ψ, and GP hyperparameters. In this work, α is set to
a fixed value of 1e−2 for all experiments except for the final data analysis
example, where it is set to a value of 1e−4. While the ELBO may be expressed
in a variety of ways, we will follow the form that includes the variational
entropy term. For details about this approach for the standard GP-VAE, see
[24].

2.1 Fourier-domain representation of the GP-VAE

We consider a version of the GP-VAE whose auxiliary variables are a Fourier
frequency representation of the time domain, as opposed to timepoints sampled
on a regular lattice. This allows us to parameterize a frequency represen-
tation of the latent variables that is Gaussian distributed according to a
z̃(ω) ∼ N (0, K̃p) where the original RBF GP covariance matrix K may be
diagonalized by K̃ = BKB⊤ Here, B is the orthonormal discrete Fourier
transform matrix and ω ∈ 0, 1, 2 . . .F represents the frequency. The model
prior can now be written as

p(Z̃ | ω,θ, α) =
P∏
p=1

N
(
z̃p | 0, K̃θ(ω) + αIF

)
(1)

Where ω represents a F -values long vector of Fourier frequencies, and Z̃
represents a P × F matrix of the frequency representation of the P latent
variables at the F frequencies. The model likelihood retains the same form
as the standard GP-VAE.

p(Y |Z, ϕ, σ2) =
T∏
t=1

N (gϕ(zt), σ
2IT ) (2)
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Where zt represents the tth time index of Z, a P × T matrix where each row
is the time-domain representation of the pth latent, given by zp = Bz̃p.

We define the variational posterior so that it factorizes over the Fourier
frequencies. The variational distribution can be written as

qψ(Z̃
i | Y i) =

∏
ω

N
(
z̃iω | µ̃ψ

(
Y i
)
, diag

(
σ̃2
ψ

(
Y i
)))

, (3)

where i indexes a trial of times-series images Y . Training is done by
batches over a subset of trials. In contrast to the standard GP-VAE [24], the
Fourier representation requires that, for each trial, images at all timepoints are
mapped to a single P ×F -dimensional Fourier representation. We accomplish
this in two steps - first, we use a deep neural network for each image at each
time point yit, which will result in T total network embeddings for a single
trial, each of dimension P . We follow that with a single linear layer each for
the mean and variance of the variational distribution, lµ̃(·), lσ̃2(·), that will
map from the number of timepoints to the number of Fourier frequencies.
lµ̃, lσ̃2 : IRP×T → IRP×F . A schematic for the Fourier domain variational and
generative architecture is displayed in Figure 1(a).

There are a number of advantages to representing the GP-VAE latents
and variational parameters in the Fourier domain. For one, the diagonal
representation of K means we avoid a costly matrix inversion when evaluating
the GP prior [29, 28, 32–34]. Secondly, we can prune the high frequencies in
the Fourier domain, effectively sparsifying the variational parameters, and
hence frequencies (F < T ), while enforcing a smooth latent representation.
Though this is a free parameter in our model thus if the user would like to
model steady-states they are able to easily adjust this. Lastly, the Fourier
representation of the variational parameters mean we can retain both temporal
correlations and the advantages of using a mean-field approximation for the
variational posterior qϕ [21].These advantages have been seen in simpler GP
models. For more information, see [29, 21].

The Fourier-represented GP-VAE dramatically improves the ability of
the GP-VAE to learn a true underlying smoothly evolving latent for high-
dimension data in a non-linear model. We demonstrate this on a simulated
example using an MNIST digit that rotates by a time-varying angle given by
a draw from a GP with an RBF kernel. We fit our Fourier GP-VAE model
as well as the standard VAE and standard GP-VAE models to these trials.
In each case, we are looking to recover the true underlying generative latent
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Figure 1: (a) schematic for the Fourier domain GP-VAE. All images at
all timepoints for a given trial are encoded via a deep neural network into
variational parameters of a pruned Fourier representation of the latent space.
This Fourier representation is then mapped back into the time domain before
being passed through a decoder network to give the image reconstruction at
each timepoint. (b) Image reconstructions of the standard VAE, GP-VAE
and Fourier domain GP-VAE. (c) Estimated latent for each model alongside
the true underlying latent angle. (d) Mean squared error (MSE) of estimated
latents and true latents for 60 held out trials. Error bars indicate standard
error.

angle and hence we assert a one-dimensional latent dimensionality for the
model. For more information on training and testing, see the supplement.

Because the Fourier variational distribution preserves temporal correlations
and prunes the high-frequency components of the latents z, the Fourier
GP-VAE model shows much smoother underlying latent representations on
held-out trials (Fig 1 (c)), though each model retains the ability to accurately
reconstruct the images through the network mapping from the latent space
(Fig 1(b)). When the latent space is mapped through an affine transform to
align latents on held-out trials to the true latent space, the Fourier domain
GP-VAE does much better uncovering the true smoothly evolving latent angle
(Fig 1 (c), (d)).
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3 The Multi-Modal Gaussian Process Varia-
tional Autoencoder

We now focus on extending the GP-VAE to model data of two modalities
simultaneously. The examples we will emphasize here involve neural activity
alongside some other experimental variable such as naturalistic movement
or high-dimensional stimuli. The observations of our model are two distinct
data modalities represented by matrices y

(i)
A ∈ IRN×T and y

(i)
B ∈ IRM×T .

Here, t ∈ (1, 2 . . . T ) denotes time-bin indices, i denotes trials, and N and
M denote the dimension of the observations for each modality. We assume,
as before, that all data are generated by smoothly varying low-dimensional
latent variables that are now either independent to, or shared between data
modalities. As before, latents are initially parameterized in a pruned Fourier
representation before being mapped to the time domain. The latents are then
partitioned by a loadings matrix W which linearly combines the shared latent
representation with the independent latents.

[
xA
xB

]
=

[
WA WS1 0
0 WS2 WB

]zAzS
zB

+ d (4)

Here, zS refers to latents that are shared between regions, while zA and zB
denote region-specific latent variables and d represents an additive offset. The
outputs after this linear mixing result in modality-specific embeddings which
we call xA and xB. Here, modality A, the ’behavioral modality’ is passed
through a deep neural network, and modality B, the ’neural modality’, is
passed through a pointwise nonlinearity f to enforce non-negativity of Poisson
rates. The likelihood of the data given the embedding is:

p(yA|xA) ∼ N (gψ(xA), σ
2
yIN), p(yB|xB) ∼ P(f(xB)), (5)

Where the function gψ(·) represents a decoder neural network for the ex-
perimental data and we use the exponential nonlinearity for f . Learning
is performed as before - the mean and variance of a mean-field Gaussian
variational distribution is given by the data passed through a neural network
with parameters ϕ. Here, our lower bound is similar to that found in Casale
et al. (2018) with an additional term for the neural data modality.
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Figure 2: (a) Graphical model of the multimodal GP-VAE. A set of Fourier
frequencies describe the Fourier representation of shared and independent
latents across modality with a GP prior over each latent. Latents are trans-
formed to the time domain and combined to generate data for each modality.
(b) Schematic of the MM-GPVAE.

ELBO = EZ̃∼qϕ

[ Gaussian Likelihood (other modality)︷ ︸︸ ︷∑
t

logN
(
yA | gψ (xA) , σ2

yIN
)
+

Poisson Likelihood (Neural Rates)︷ ︸︸ ︷∑
t

log(P(yB|f(xB)) +

GP Prior︷ ︸︸ ︷
log p(Z̃ | T ,θ)

]
+

Entropy︷ ︸︸ ︷
H(qϕ)

(6)
The expectation with respect to the variational distribution is performed by
drawing stochastic samples ϵ from a standard normal and using the variational
mean and variance to get a sample from qϕ (the so-called reparameterization
trick [31]). However, because we use a mean-field Gaussian variational
distribution, both the Poisson log-likelihood and the GP prior terms in
the expectation can be computed in closed-form and preclude the need for
sampling for these terms. For clarity, we omit that closed-form expression
here. See the supplment for details.

A graphical depiction of the generative model of the MM-GPVAE is shown
in figure 2(a). The hyperparameters of the model are the latent-specific kernel
parameters θ that provide the GP covariance structure as well as a constant α
additive diagonal offset (fixed during inference). The entire schematic of the
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MM-GPVAE model, including the generative and variational distributions, is
depicted in figure 2(b).

4 Experiments

4.1 Simulated data

We first assess the performance of the MM-GPVAE model using a simulated
dataset of two modalities: a smoothly rotating and scaling MNIST digit,
and simultaneously accompanied Poisson spike counts from 100 neurons. A
total of three latents were drawn from an underlying GP kernel to generate
single-dimensional shared, neural, and image subspaces. There were a total
of 300 trials, each trial consisting of 60 timebins. The data was split into
80% for training and 20% for testing. For this simulated example, one latent
represents an interpretable modulation of the image as it directly effects the
scaling of the MNIST digit. So as the latent values change along the trial, the
image scales smaller and larger continuously. Another latent, corresponding to
the independent component of the neural modality, provides one component
of the log-rates of the Poisson spiking data. The final latent reflects the shared
variability between both modalities. Here, the latent is again interpretable
with respect to the image in that this latent corresponds to the angle of the
smoothly rotating MNIST digit. This shared latent also linearly combines
with the neural-only subspace to provide the the log-rates of the spiking
Poisson population. The MM-GPVAE trained simultaneously on both images
and spikes can successfully recover the three-dimensional latent structure
across these two modalities. Figure 3(a) shows the underlying true latent in a
held-out trial alongside the estimated latent structure extracted from the MM-
GPVAE. As before, the held-out latent space is scaled to align with the true
latent space as closely as possible, as the MM-GPVAE model latent space is
invariant to scaling transform. In addition to accurately extracting the latent
structure, the MM-GPVAE also has the ability to accurately reconstruct both
neural rates and images across the time-series from the latent space. Four
example images and three example neural rates are show in Figure 3 (b). For
more examples, see the supplemental materials.

The MM-GPVAE is also able to exploit information across modalities to
better model the observed data. The left side of 3(c) shows the mean squared
error (MSE) across pixels for reconstructed images in held-out trials. By
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Figure 3: (a) True and estimated latents for the MM-GPVAE trained on
simulated neural spiking data as well as a smoothly scaling and rotating
MNIST digit. (b) Estimated neural rates on an example trial for 3 example
neurons as well as 4 example reconstructed images of the MNIST digit at
different angles and scales. (c) (left) Reconstruction accuracy from the image
data trained on the images alone (GPVAE) compared to training with both
modalities simultaneously (MM-GPVAE). (middle) Accuracy of estimated
neural rates (left) trained on neural-activity alone (Poisson - GPFA) compared
to MM-GPVAE. (right). Accuracy of shared latent estimated from the MM-
GPVAE compared to single-modality model variants. Error bars are standard
error.

leveraging latent information from the spiking modality, the MM-GPVAE
is able to reconstruct the images better than a single-modality GP-VAE
trained on the images alone [24]. Similarly, the held-out neural rates are
better estimated when the image data is included, though the effect here
is more modest than for the image modality. Finally, we also show that
the shared latent variable can be more accurately identified when data from
both modalities is used (Figure 3(c)). Here we assess the accuracy of the
shared latent estimate on test trials when we use data from each modality
alone (GPVAE and GPFA) compared to both modalities simultaneously (MM-
GPVAE). As expected, data from both modalities better identifies shared
structure across the data types. The settings for all three models were exactly
the same for these comparisons. We only ablated the models to make it into
uni-modal settings. For additional details regarding training and the neural
network set-ups for this example, please see the supplemental material.
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4.2 Application to fly experimental data

Next we look to evaluate the MM-GPVAE on a real-world multi-modal dataset.
Here, we consider a whole-brain calcium imaging from an adult, behaving
Drosophila [35]. We isolate 1000 calcium traces recorded using SCAPE
microscopy [36] from an animal while it performs a variety of distinct behaviors
fixed on a spherical treadmill. These 1000 calcium traces are dispersed widely
and uniformly across the central fly brain and were randomly picked from the
dataset to use in our model. Alongside the neural measurements, eight 2-d
limb positions are extracted from a recorded video using the software tool
DeepLabCut [37]. These simultaneously recorded calcium traces and limb
position measurements are split into 318 trials of 35 time-bins sampled at
70hz. Each trial has one of 5 corresponding behavioral labels (still, running,
front grooming, back grooming and abdomen bending) determined via a
semi-supervised approach from the tracked limb position measurements [38].
Importantly, these behavioral labels are not used when fitting the MM-
GPVAE. For additional information on how we isolate this behavioral data
and neural traces, see the supplemental materials.

For this set-up, we consider a variant of the MM-GPVAE where we
have removed the non-linearity for the neural data modality, and instead
consider Gaussian observations with an additional parameter controlling
the observation variance for the fluorescence traces (akin to the original
formulation of GPFA [30]). We do this because calcium imaging traces take on
continuous values and are not well-described by Poisson observations, though
in principle other observation likelihoods could be used here [39]. Next, we
consider a 7-dimensional latent behavioral subspace and 26 dimensional neural
subspace, with 5 of these dimensions being shared across modalities. These
choices were made through initial exploration of the model and examining
cross-validated model performance, though the results we show are robust to
a wide range of dimensionality choices for each of the subspaces.

The MM-GPVAE is able to successfully reconstruct both behavioral
trajectories and calcium traces in held-out trials for these data. The top of
Figure 4(c) shows the true and decoded 16 limb position measurements with
5 highlighted for clarity. The bottom part of figure 4(c) shows 6 randomly
selected calcium traces alongside their model reconstructions. In each case,
the MM-GPVAE can roughly capture the temporal trends in this multi-modal
dataset. To analyze the shared and independent latent subspaces of these
data we consider a 2d projection of each latent space, and plot the mean latent
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Figure 4: (a) Limb position tracking in Drosophila (b) (top) Contribution
of the variability in the data across trials of the neural (left) and behavioral
(right) modalities due to shared and independent subspaces (c) (top) Limb
position estimates and true values and (bottom) six randomly selected calcium
trace estimates and true values for a given trial. (d) Visualization of average
latent value across time in the neural, behavioral and independent subspaces
for 3 behavioral categories.

value in that subspace calculated each trial. We additionally color-code the
trial according to the behavioral label. In these shared and independent latent
subspaces, we find that the "still" behavioral state is well separated from
many of the other behavioral conditions in the neural and shared subspaces.
Here, we show two others (bending and running) as an illustration (Figure
4(d)). We refer the reader to the supplement for visualizing all 5 behaviors in
the latent space. Lastly, we illustrate how much each subspace contributes to
the overall variability of neural and behavioral data. Figure 4(b) shows the
variance of the neural (left) and behavioral (right) data calculated for each
trial where the reconstruction of the data is generated either from the shared
subspace, or either of the independent subspaces. Here, we find that the
shared subspace for each modalities contributes more to the overall variability
in the data than either of the independent subspaces, suggesting a large
fraction of shared variability between the data modalities.
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Figure 5: (a) Experimental set-up for Manduca sexta. Spikes from 10 muscle
groups are recorded as an animal tracks a 1 Hz moving flower stimulus (b)
top: Spikes from 3 example motor neurons in a short (half-second) segment
of the recording show periodic activity at approximately 22 Hz. middle:
estimated Poisson rates captured by the MM-GPVAE. bottom: The neural
latent and a torque measurement from the hawkmoth. The strong ∼22Hz
modulation reflects the flapping of the moth wings. (c) Visual stimulus
and reconstructions from the MM-GPVAE (d) Weights of hawkmoth spike
decoder for neural-only and shared latents. Values here indicate how strongly
each individual neuron is modulated by the shared or independent latent
subspaces. (e) A one dimensional latent from the visual-modality subspace
closely tracks the stimulus position. (f) The shared latent between modalities
plotted alongside the torque measurement.

4.3 Application to moth experimental data

Next, we evaluate the MM-GPVAE on a dataset of a hawkmoth (Manduca
sexta) tracking a moving flower. The hawkmoth is an agile flier that is able
to closely follow swiftly moving targets while hovering in midair, making it a
model organism for the study of sensorimotor control [40]. The modalities in
our dataset consist of a time-series of images of a visual stimulus temporally
paired with electromyography (EMG) signals recorded during 20-second
experimental trials. Each image is an event-based reconstruction (inspired by
insect visual system) of a white floral target moving laterally during a trial
as viewed in the hawkmoth’s frame of reference [41] (Fig 5(a)). The floral
target moves sinusoidally at 1 Hz against a black background. Each pixel
in a video frame can occupy a polarity of -1, 0 or +1 based on whether its
luminosity has respectively decreased, unchanged or increased as compared
to the previous frame in the temporal sequence. Temporally paired with the
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floral stimulus, EMG recordings are precisely measured spike trains from the
10 major flight muscles of the hawkmoth responding to the floral target while
flying on a tether and flapping at about 22 Hz. Altogether, the 10-muscle
recordings form a near-complete motor program that controls its flight during
target tracking response [42].

We fit the MM-GPVAE model to these data using a 2-dimensional latent
space to describe the moving visual stimulus and a 3-dimensional latent space
to describe the Poisson rates from the 10 motor units. Of these, one latent
dimension is shared between modalities. Here, a small number of dimensions
are used both because only a few dimensions were needed to be able to
accurately reconstruct the data of each modality, and also because it allows
for easier interpretation of the latent dynamics with respect to the experiment.
We split a 20 second recording into 6 trials of equal length for model fitting.
Here, it is worth noting that the trials are much longer (∼ 3300 timebins)
than in the previous experiments. To encourage the visual-stimulus latent
space to capture the slow dynamics of the moving flower, and the neural
latent space to capture the fast dynamics of the flapping wings, we initialized
the length-scale (ℓ) parameter of the GP kernel at a value of 300 for the image
latent, 10 for the neural latent, and 150 for the latent component shared
between modalities. We find that the MM-GPVAE is able to accurately
reconstruct both the neural rates (Fig 5(b)) and visual stimulus (Fig 5(c))
from its low dimensional latent space. We see that the neural rates are
strongly modulated by the wing-flap oscillation at approximately 22 Hz. This
is of course also seen in the neural latent space identified by the MM-GPVAE.
At the bottom of Figure 5(b) we see that the first PC of the 2-dimensional
latent space closely aligns with the torque measurement along the z-axis of
the moth motion, a measurement previously identified to be closely associated
with wing beating [42]. The MM-GPVAE is also able to reconstruct the visual
stimulus data, as seen in 5(c). When viewing the latent space corresponding to
the visual stimulus modality, we find that the value of the smoothly evolving
latent variable closely tracks the position of the stimulus in x dimension (the
only dimension along which it moves, see Figure 5(e)). Finally, the shared
latent dimension shows some modulation with wing-flapping, but exhibits
temporal structure not obviously related to the flapping frequency or stimulus
motion. This may correspond to a longer-timescale motor behavior such
as the variation in how strongly the hawkmoth is responding to track the
stimulus, which could depend on the degree of its attention to the stimulus
and its state of motivation. Importantly, we find that including a shared
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dimension better reconstructs the data than not including one, suggesting
that there is a component of neural dynamics shared with stimulus dynamics.
Specifically, we find that if we remove the shared latent we see approximately
a 70% drop in mse in reconstruction of the image modality and about a 5%
drop for reconstruction of the rates. Because the neural rates have such a
strong wing-flapping modulation, we expect the slower-moving dynamics to
account for only a small amount of the variability here.

Lastly, to emphasize the added interpretability we get from the linear layer
in the neural likelihood (GPFA), we plot the weights Ws2 and WB that map
the shared and independent neural latents to the log-rate of the hawkmoth
neurons. This is easiest to visualize in this example dataset because there
is only a small neural population from which we record spikes. Figure 5 (d)
shows each latent loading on to each of the ten neurons. Here, we z-score
the weights along each dimension for easy visualization. We see that certain
neurons are more heavily driven by the neural-only latents whereas others are
more strongly modulated by the shared latent component. Future analysis of
these data may help us further uncover how these shared and independent
latent dynamics relate to the hawkmoth tracking and specific sensorimotor
neurons and function in this experiment.

5 Comparison to Existing Approaches
Our work contrasts in important ways with similar recently-developed multi-
modal latent variable models for neural time series experiments. One closely
related model, Targeted Neural Dynamical Modeling (TNDM) [11], was specif-
ically designed to non-linearly separate the neural latent representation into
behaviorally relevant and irrelevant subspaces. However, this work was eval-
uated on a dataset with a relatively simple behavioral paradigm, and fails
to to reconstruct complex behavioral modalities (so is not well suited to
reconstructing stimuli, for example). Another related multi-modal time-series
neuroscience model, Preferential Subspace Identification (PSID) [12], was
designed to linearly separate the neural latent representation into behaviorally
relevant and irrelevant subspaces. However, PSID is restricted in its ability
to describe more complex dynamics, and similarly to TNDM only performs
well when behavioral or stimulus modalities have simple structure due to lack
of a DNN decoder. To demonstrate the capabilities of MM-GPVAE alongside
these completing methods, we evaluate the MM-GPVAE, TNDM, and PSID

16



on the simple dataset used in TNDM paper as well as our simulated rotating
and scaling MNIST example.

We first compare our MM-GPVAE with TNDM [11] and PSID [12] using
our simulated data of rotating and scaling MNIST digit ‘3’ and simultaneous
Poisson neural rates to show the reconstruction performance of our model in
comparison to these two competing models. Error on both data modalities as
well as reconstructions of each modality on held-out trials can be found in
the supplement.

To further compare these models in a real-world setting, we then implement
PSID, TNDM, and MMGPVAE in a simple neuroscience example where all
models are capable of recovering behavioral trajectories as well as neural
rates. We use the primate reaching data used in the TNDM paper. Here, the
2D reaching task is simple, and so linear dynamics as well as our deep neural
network can reconstruct both modalities well. The results from this can be
seen in Figure 6. While both TNDM and PSID can provide only two subspaces
in which only one can separate the 8 reaching positions (relevant subspace),
MM-GPVAE can provide visualization for 3 subspaces, 2 modality specific,
and 1 shared, and we can see a clear separation with both the behavioral-only
subspace as well as shared subspace.

6 Conclusion
In this work, we have introduced the multi-modal Gaussian Process variational
autoencoder (MM-GPVAE) to identify temporally evolving latent variables
for jointly recorded neural activity and behavioral or stimulus measurements.
We parameterized the model in the Fourier domain to better extract identi-
fiable temporal structure from high-dimensional time-series data. We first
demonstrated that the Fourier-mean field representation is able to better
recover the true latent variables in a single-modality setting compared to
previous approaches in the time domain. We then show that our multi-modal
GPVAE can also accurately recover latent structure across data modalities,
which we demonstrate using a smoothly rotating and scaling MNIST digit
alongside simulated neural spike trains. We then show that the model can
be flexibly adapted to multiple real-world multi-modal behavioral settings.
We implement the MM-GPVAE on calcium imaging traces and tracked limb
positions of Drosophila and visualize the latent embeddings of distinct fly
behaviors in shared and independent latent subspaces. We also use the MM-
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Figure 6: (a) Separation of all 8 reaching directions in the relevant subspace
using PSID. (b) Separation of all 8 reaching directions in the relevant subspace
using TNDM. (c) Separation of all 8 reaching directions in behavior-only
and shared subspaces. Dots here indicate the mean latent value across
the entire trial. The neural subspace shows no behavioral separation in
the latent-space whereas the behavioral and shared subspaces show strong
behavioral separation. This result closely parallels with [11, 12], which isolates
behaviorally relevant and irrelevant neural subspaces. However, in contrast
to [11, 12] the MM-GPVAE isolates a distinct shared subspace as well as
both neural and behavioral independent subspaces from a raw unsupervised
partitioning of both the behavioral and neural data.

GPVAE on spikes from hawkmoth flight muscles as the animal tracks an
oscillating visual stimulus. Here, our model extracted latent variables from
each modality that corresponds to distinct experimentally relevant variables -
wing flapping and a much slower stimulus movement. Here, we also demon-
strated that the MM-GPVAE can be adapted to long time-series data to
identify latent variables at widely varying timescales.

Choice of prior: In this work we focus on the use of GP priors to describe
dynamics, though many other choices could have been made. As stated above,
the existing multi-modal time-series models in neuroscience using linear
dynamics and RNNs have limitations when compared with the MM-GPVAE.
However, other dynamical approaches such as switching linear dynamical
systems or non-linear dynamics models exist in neuroscience and are powerful
in single modality settings [9, 43]. Such models contain dependencies across
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the latent dynamical variables, and so require reformulation and developing
new inference to adapt them to multi-modal settings, and do not afford
the interpretability and scalability gains seen with the Fourier approach.
Thus, development of multi-modal versions of different dynamical models and
evaluating their strengths and limitations alongside the MM-GPVAE remains
an important avenue of future work in neuroscience.

Limitations : One limitation of our model is that it is specifically designed
for temporally aligned time-series data, therefore requiring the data from both
modalities to be recorded at matching time intervals or needing resampling
to align them (see supplement). However, techniques such as time warping
can be implemented to address this limitation. The use of the GP prior with
RBF kernel and pruned Fourier representation also assumes latent dynamics
are varying smoothly in time, precluding the appropriateness of our model
for data with abrupt state-changes. Lastly, despite the improvements of
the Fourier domain representation in our model, model performance can be
sensitive to optimization step-size, covariance parameter α, as well as initial
length-scale parameter values, pruning thresholds and marginal variance σ2

y.
See supplement for more information and example code.

Broader impact : Our work provides a general model for exploratory data
analysis for multi-modal time-series data. Though we develop the model with
neuroscience experiments in mind, in principle the model could be adapted
to other settings where the assumption of smoothly evolving latent dynamics
holds across distinct data modalities. We do not anticipate any potential
negative societal impacts of our work.

Additional notes on inference: All models in this manuscript were trained
end-to-end in PyTorch using the ADAM optimizer. Training was done on a
Macbook Pro with Apple M1 max chip and all evaluations took less than
an hour to fit. All encoder and decoder neural networks were standard
feedforward neural networks with ELU activation functions. Additional
details on neural network architectures for the experiments can be found in
the supplement. The code for MM-GPVAE will be available upon formal
publication.
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Supplementary Material

Additional comparison with Targeted Neural Dynamical
Modeling (TNDM) and Preferential Subspace Identifica-
tion (PSID)

In order to compare MM-GPVAE with Targeted Neural Dynamical Modeling
(TNDM) [11] and Preferential Subspace Identification (PSID) [12], we evalu-
ated both TNDM and PSID with our rotating and scaling MNIST digit ’3’
alongside Poisson neural rates. In Figure 7, we show the reconstruction of
both the behavioral modality, the MNIST digit ’3’, and Poisson neural rates
for each model. In addition to these, we also provide the error on both data
modalities on held-out trials. Both TNDM and PSID have linear decoders to
observations, thus are not capable of accurately describing the rotating digit.
On top of this, we see that the MMGPVAE shows better reconstruction of
the underlying smooth neural rates.
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Figure 7: (a) Reconstruction of the scaling/rotating MNIST digit ’3’ with
MM-GPVAE, TNDM and PSID. (b) Reconstruction of neural rates with
MM-GPVAE, TNDM, and PSID. (c) MSE for neural rate reconstruction
(left), and MSE for image reconstruction (right). Here, each dot indicates
one trial mse from MMGPVAE vs a competing model. The majority of the
trials errors fall above the unity line for both models, indicating overall better
reconstruction with MMGPVAE.
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Figure 8: (a) More examples of estimated images and neural rates of the
MNIST digit ’3’ as well as independent and shared latent estimation.

Additional evaluations of the MM-GPVAE on simulated
data

To provide a more complete picture of the ability of the MM-GPVAE to
both reconstruct simulated ’behavioral’ and neural data, and to accurately
recover the true underlying latent variables, we show additional performance
evaluations here. Figure 8 shows an example of 24 reconstructed 3s from the
evaluation shown in Figure 3 of the manuscript. Again, here we reconstruct a
scaling and rotating MNIST digit ’3’ alongside 100 neural spike trains, where
one latent dimension is shared across modalities. Figure 8 also shows latent
reconstructions and 5 example neural rates in 5 held out trials. Using the
same set-up, we additionally run the MM-GPVAE with MNIST digit ’2’, and
show an example of 24 reconstructed images as well as 3 example neural rates
(of 100) on 5 held-out trials in Figure 9.

In addition to these, we also extend figure 3(a) from our manuscript
with all the latent trajectories for our simulated data comparisons, including
estimates from GPFA and GPVAE. We additionally provide clarification
for the ‘shared’ latent for our single modality comparisons (GP-VAE and
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GPFA). Because in GPFA and GPVAE there is ambiguity as to which latent
is “shared” (as these are unimodal models), attached Figure 10 panels (b) and
(c) show the mean squared error for both of the possible latents for GPVAE
and GPFA. Here, we note that the MMGPVAE is able to ‘disentangle’ the
shared representation across the modalities, something that each unimodal
model is unable to do. We visualize both the average mean-squared error (c)
on held-out data as well as a per-trial mean-squared error scatter-plot (b) to
provide a better sense of model performance.
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Neural Net Architectures

For the MM-GPVAE, both the simulated and real-world multi-modal eval-
uations used similar neural net architectures. However, there were some
modifications of the nodes/layers that were unique to each evaluation. This
was necessary as the latent dimensionality was different across our different
evaluations, and certain behavioral reconstructions, especially those that were
high-dimensional, required richer neural network parameterizations. The
schematic for the MM-GPVAE neural network architecture in our simulated
example can be found in Figure 11, and the schematics for the neural network
architectures for the real-world multi-modal datasets can be found in Figure
12 (fly) and Figure 13 (hawkmoth). For our evaluation on the dataset used in
[11], whose results are above, the architecture can be found in Figure 14. Note
that for all experiments, each modality is encoded to its own set of variational
means and variances (transformed into the Fourier domain). The encoded
means and variances representing the shared latents are then summed to give
the encoded shared latents means and variances. Across all evaluations, we
parameterized our latents in the Fourier domain and converted back to the
time domain before decoding.
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Figure 11: MM-GPVAE architecture for simulated data. (a) Encoder network
of the MNIST digit. (b) Encoder network of the neural information. (c)
Decoder network of the MNIST digit. (d) Decoder network of the neural
information.
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Figure 12: Neural network architecture for evaluation on fly dataset. (a)
Encoder network for behavior. (b) Encoder network for neural data. (c)
Decoder network for behavior. (d) Decoder network for neural data.
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Figure 13: Neural network architecture for evaluation on hawkmoth dataset.
(a) Encoder network for behavior. (b) Encoder network for neural data. (c)
Decoder network for behavior. (d) Decoder network for neural data.

30



 input layer
    (73, 2)

LL + ELU

hidden layer
    (73, 8)

   mean
  (73, 48)

log variance
    (73, 48)

latent space
   (16, 64)

map to frequency 
space

map to frequency 
space

latent space
   (16, 64)

 hidden layer
    (73, 48)

output layer
    (73, 2)

LL + ELU

 hidden layer
    (73, 48)

output layer
   (73, 70)

LL 

iFFT iFFT

(a) (b)

(c) (d)

 input layer
   (73, 70) LL + ELU
hidden layer
   (73, 60)
hidden layer
   (73, 40)

LL + ELU

   mean
  (73, 48)

log variance
    (73, 48)

hidden layer
   (73, 20)

LL + ELU

Figure 14: Neural network architecture for Monkey reaching data, evaluated
above. (a) Encoder network for the behavior. (b) Encoder network for the
neural activity. (c) Decoder network for the behavior. (d) Decoder network
for the neural activity.
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Additional information on fly experimental data

Pre-processing: We isolated 1000 raw calcium traces from [35] for use with our
model for the evaluations in section 4.2 of the manuscript. This dataset also
contained x,y positions from 8 tracked limbs positions [37]. The data came
as one continuous recording, and at every time point there was a behavioral
categorization probability for one of 6 distinct behaviors (undefined, still,
running, front grooming, back grooming, abdomen bending) determined via
the algorithm outlined in [38]. To split this continuous recording into trials,
we found segments of the recording where, for 35 continuous samples, a single
behavior was estimated at a ≥ %60 probability. This generated 318 total
trials where each trial was of one of 5 possible behaviors. There was no section
of the recording where there was an ’undefined’ behavior for 35 continuous
samples, so there are no undefined behavioral trials in our analysis. To avoid
the possibility of shared latent to contain dynamics that primarily drive one
modality, we use a specific cross-validation procedure. Specifically, after first
identifying the appropriate number of dimensions per modality, we increased
the number of shared dimensions sequentially until predictive performance
no longer improves, assuring we had no more shared dimensions than needed.
Additionally, this is more likely to be the case when the dimensionality of the
shared subspace is too large.

Additional evaluation: Though we show the time-course of the behavioral
reconstruction in the main manuscript, we show a 2-d reconstruction on 2
example trials in Figure 15. Here we plot true x,y positions for 2 trails for each
of the 8 limb positions alongside our model’s reconstruction. We can see here
that our model also captures the spatial information in the behavioral data.
We also show for comparison the 2-d depiction of the shared and independent
latent representation of all trials in the dataset (Figure 16), with all five of
the behaviors labelled. You can see here that the ’still’ behavior separates
well from all other behaviors in the shared and neural subspaces.

Additional information on hawkmoth experimental data

Pre-processing: Original synthetic visual stimuli were sampled at 125 Hz and
the neural and torque recordings were sampled at 10K Hz [40–42].

To prepare these data for evaluation with the MM-GPVAE, we first
downsampled neural information and torque measurements to 1K Hz by
binning the spike counts and averaging the torque measurements at this
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Figure 15: (a) Reconstruction of 8 fly limb positions in 2 held-out trials. Here,
we see the MM-GPVAE is able to reconstruct the spatial information of the
behavioral modality in the 8 tracked limb positions.
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Figure 16: (a) Separation of all 5 fly behaviors in the behavior-only, neural-
only, and shared subspaces. Similar to what is seen in the main manuscript,
the ’still’ behavior is well separated from trials with other behavioral labels
in the neural and shared latent subspaces.

temporal resolution. To align these measurements with the visual stimuli, we
upsampled the images 8-fold. The entire recording was 20 seconds long and
was split into 6 evenly-divided trials.

The visual stimuli contained 3024 pixels and there were ten total hawkmoth
motor neurons. We set the neural-independent subspace to 2-dimensional, the
images-independent subspace to 1-dimensional, and an additional 1 dimension
for the shared subspace. To encourage slow-evolving smooth latents in the
shared and image subspaces, and faster-evolving neural latents, we initialized
the length scale parameters for each latent dimension to different values.
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Figure 17: (a) True spikes and estimated rates of all 10 hawkmoth neurons
over 1500 time points.

The length scale was set to 10 for the neural latents, 150 for the shared
latent, and 300 for the image latent. This biased the model fits to capture
slower dynamics in the image subspace and the faster dynamics in the neural
subspace.

Additional evaluation: The neural rates are well-captured by the MM-
GPVAE for all 10 hawkmoth motor neurons, which each show strong peri-
odicity. Figure 17 shows the strong fast-oscillation spike rates captured by
the MM-GPVAE for all ten hawkmoth neurons alongside the recorded spikes
for a 1.5 second period. Similar periodicity exists across the entire 20 second
recording.

Additional model fitting information

All data had a 80-20 split for training and testing respectively. The Fourier
frequency pruning was set to the minimum length scale of 10, 10, 3, and
16 for GP-VAE (simulated), MM-GPVAE (simulated), MM-GPVAE (fly),
and MM-GPVAE (moth) respectively. GP length scales parameters were
initialized to a value of 30 for all except for the hawkmoth evaluations (where
initial values are indicated above), and jointly optimized with the ELBO. The
covariance parameter α was set at a fixed value of 1e-2, 1e-2, 1e-3, and 1e-4
for GP-VAE (simulated), MM-GPVAE (simulated), MM-GPVAE (fly), and
MM-GPVAE (moth) respectively. We additionally initialized the offsets d of
the neural modality to the average log-rate of the neural data.
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Choice of Gaussian observation variance initialization, σ2

We found that how we initially set the value of σ2 could effect the performance
of the MM-GPVAE, especially regarding the reconstruction of the behavioral
data. Although we learned the σ2 value jointly with the other parameters
during optimization, the value of σ2 tended to vary minimally from its initial
value. Therefore, our setting of σ2 tended to act as a reconstruction penalty,
balancing the ability of the MM-GPVAE to prefer to reconstruct either the
behavioral or neural data. Such a scaling term in the ELBO reconstruction
has been seen in other models [11], and in the original GP-VAE this parameter
was chosen carefully through a specific cross-validation approach [24]. Here,
we simply set σ2 to a value proportional to the dimensionality of the behavioral
modality, which tended to balance the neural and behavioral terms in the
ELBO, and generate good reconstructions for each modality. The inital values
for σ2 were 1000, 100, 1e-6, and 1 for GP-VAE (simulated), MM-GPVAE
(simulated), MM-GPVAE (fly), and MM-GPVAE (moth) respectively.

Derivation of the evidence lower bound (ELBO)

Here we show the derivation of the evidence lower bound used for the MM-
GPVAE. For clarity, we will start by deriving the ELBO for the MM-GPVAE
just in the time domain. We set the GP prior parameters Θ = {α, θ}, W to
be the loadings matrix and offsets from equation 4 in the manuscript, T to
be the observed timepoints, and Z to be the collection of all the shared and
independent latents Z = {za, zs, zb}.
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log p
(
Y A,Y B | T ,ϕ,W , σ2,Θ

)
=

log

∫
p
(
Y A,Y B | Z,ϕ,W , σ2

)
p(Z | T ,Θ)

qψ(Z | Y A,Y B)
qψ(Z | Y A,Y B)dZ

≥
∫

log

(
p
(
Y A,Y B | Z,ϕ,W , σ2

)
p(Z | T ,Θ)

qψ(Z | Y A,Y B)

)
qψ(Z | Y A,Y B)dZ

= EZ∼qψ
[
log p(Y A | ϕ, σ2, zs, za) + log p(Y B | W , zs, zb) + log p(Z | T ,Θ)

]
−
∫

log qψ(Z | Y )qψ(Z | Y )dZ

= EZ∼qψ

[∑
t

logN
(
yA | gϕ (xA) , σ2IN

)
+
∑
t

log(P(yB|f(xB))

+ log p(Z | T ,Θ)

]
+H(qψ)

The Fourier domain representation of the ELBO only requires sampling
over variational parameters in the Fourier space, but only changes the expres-
sion of the GP prior term p(Z).

GP prior : The expectation of the GP prior term can be expressed in the
Fourier domain as:

EZ̃∼qψ

[
p(Z̃ | Θ,ω)

]
=
∑
p,ω

EZ̃∼qψ

[
logN

(
z̃p,ω|0, [K̃p]ω,ω

)]

= 1
2

∑
p,ω

EZ̃∼qψ

[
log([K̃p]ω,ω + α) +

z̃2p,ω

([K̃p]ω,ω + α)

]

= 1
2

∑
p,ω

log([K̃p]ω,ω + α) +
σ̃2
p,ω(Y ) + µ̃2

p,ω(Y )

([K̃p]ω,ω + α)
,

where the double sum is due to the variational distribution q being a mean
field Gaussian, and p here indexes latents and ω indexes Fourier frequencies.

Neural likelihood : Since the estimated log-rates of the neural data is a
linear transform of the shared and neural latent variables, we can also evaluate
the expectation of the neural-modality likelihood term in closed form. Recall
that

x = WZ = WZ̃B⊤,
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where x is the matrix of embeddings, and Z̃ is the P ×F matrix of Fourier-
domain latent variables. We may therefore write the embedding for measure-
ment i at time t as

xi,t = w⊤
i Z̃bt,

where wi is the ith row of W and b⊤
t is the tth column of B⊤. If we let

µ̃p,ω = EZ̃∼qψ [z̃p,ω], and correspondingly let µ̃ be the P ×F matrix of µ̃p,ω’s
then EZ̃∼qψ [xi,t] = w⊤

i µ̃bt. We may equivalently write xi,t as

xi,t = vec(xi,t) = vec(w⊤
i Z̃bt)

= vec(b⊤
t Z̃

⊤wi)

= (w⊤
i ⊗ b⊤

t )z̃,

where z̃ = vec(Z̃⊤). We may therefore we may derive the variance of xi,t as

VarZ̃∼qψ [xi,t] = VarZ̃∼qψ [(w
⊤
i ⊗ b⊤

t )z̃]

= EZ̃∼qψ [((w
⊤
i ⊗ b⊤

t )z̃)
2]− EZ̃∼qψ [(w

⊤
i ⊗ b⊤

t )z̃]
2

= EZ̃∼qψ [Trace[(wi ⊗ bt)(w
⊤
i ⊗ b⊤

t )z̃z̃
⊤]]− (w⊤

i µ̃bt)
2

= Trace[(wi ⊗ bt)(w
⊤
i ⊗ b⊤

t )(V + vec(µ̃)vec(µ̃)⊤]− (w⊤
i µ̃bt)

2

= (w⊤
i ⊗ b⊤

t )V(wi ⊗ bt),

where V is the diagonal posterior covariance of z̃ whose elements are the
encoded Fourier variational variances, σ̃2

ω(Y ). Therefore, we observe that
under the variational posterior xi,t| ∼ N (mi,t, vi,t), where mi,t ≡ w⊤

i µ̃bt and
vi,t ≡ (w⊤

i ⊗ b⊤
t )V(wi ⊗ bt).

We note that for λi,t = exi,t follows a long-normal distribution, meaning

that, for xi,t ∼ N (mi,t, vi,t) then E[λi,t] = emi,t+
1
2
vi,t . This allows us to specify

the posterior expectation of the Poisson likelihood in closed form. Namely,

EZ̃∼qψ

[
logP(yi,t|f(xi,t))

]
= EZ̃∼qψ

[
yi,t log λi,t + λi,t

]
− log yi,t!

= yi,tEZ̃∼qψ [xi,t] + EZ̃∼qψ [λi,t] + constZ̃

= yi,tmi,t + emi,t+
1
2
vi,t + constZ̃

37


